首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天技术   2篇
  2019年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We report the results of ionospheric measurements from DPS-4 installed at Multan (Geog coord. 30.18°N, 71.48°E, dip 47.4°). The variations in F2-layer maximum electron density NmF2 and its peak height hmF2 are studied during the deep solar minimum between cycles 23 & 24 i.e 2008–2009 with comparisons conducted with the International Reference Ionosphere (IRI) versions 2012 & 2016. We find that the hmF2 observations peak around the pre-sunrise and sunrise hours depending on the month. Seasonally, the daytime variation of NmF2 is higher in the Equinox and Summer, while daytime hmF2 are slightly higher in the Equinox and Winter. High values of hmF2 around midnight are caused by an increase of upward drifts produced by meridional winds. The ionosphere over Multan, which lies at the verge of low and mid latitude, is affected by both E×B drifts and thermospheric winds as evident from mid-night peaks and near-sunrise dips in hmF2. The results of the comparison of the observed NmF2 and hmF2 for the year 2008–2009 with the IRI-2012 (both NmF2 and hmF2) and IRI-2016 (only hmF2) estimates indicate that for NmF2, IRI-2012 with Consultative Committee International Radio (CCIR) option produces values in better agreement with observed data. Whereas, for hmF2, IRI-2016 with both International Union of Radio Science (URSI) and CCIR SHU-2015 options, predicts well for nighttime hours throughout the year. However, the IRI-2012 with CCIR option produces better agreement with data during daytime hours. Furthermore, IRI-2012 with CCIR option gives better results during Equinox months, whereas, IRI-2016 with both URSI and CCIR SHU-2015 options predict well for Winter and Summer.  相似文献   
2.
In this study, Total Electron Content (TEC) observations acquired by a GNSS receiver installed at Sonmiani (Geog. Coord. 25.19°N, 66.74°E, Geomag. Coord. 17.62°N, 141.5°E) are being reported for the first time. The data utilized is hourly instantaneous TEC values during 10 International Quiet Days (IQDs) per month from Jul-14 to Jun-15, totaling 120 observation days for monitoring nominal TEC. The findings confirm the semi-annual trend of TEC over Sonmiani, which lies at the northern crest of Equatorial Ionization Anomaly (EIA) region. The TEC measurements are then compared with NeQuick-2 and International Reference Ionosphere (IRI-2012) models. It was found that the TEC values derived from NeQuick-2 are in better agreement with GNSS measurements than those from IRI-2012. The TEC measurements also show seasonal variation which is largest during Equinox months. The TEC value in Dec solstice is higher than the Jun solstice, which confirms that the seasonal anomaly is playing a major role in this region during the course of study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号